БСЭ1/Гамма-функция

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:БСЭ1 ГАММА-ФУНКЦИЯ, одна из важнейших трансцендентных функций математического анализа, определяемая для положительных значений аргумента s формулой:

Γ(s)=0exxs1dx

где e—основание натуральных логарифмов. С помощью этого определения легко устанавливается для s>1 функциональное уравнение Γ(s)=(s1)Γ(s1). Т. к. Γ(1)=1, то отсюда легко вывести, что для целого положительного аргумента: Γ(n)=(n1)! На этом основаны многочисленные применения функции Γ в теории чисел. Другие замечательные соотношения, которым удовлетворяет функция Γ, таковы:

Γ(s)Γ(1s)=πsinπs;   Γ(s)Γ(s+12)=π22s1Γ(2s).


Функция

Γ(s)

от комплексного переменного однозначна, нигде не обращается в нуль и имеет полюсы в точках

s=0,1,2,3,...